A novel developmental regulatory motif required for stage-specific activation of the epsilon-globin gene and nuclear factor binding in embryonic erythroid cells.
نویسندگان
چکیده
Members of the human beta-globin gene family are expressed at discrete stages of development and therefore provide an important model system for examining mechanisms of temporal gene regulation. We have previously shown that expression of the embryonic beta-like globin gene (epsilon) is mediated by a complex array of positive and negative upstream control elements. Correct developmental stage- and tissue-specific gene expression is conferred by synergistic interactions between a positive regulatory element (termed epsilon-PRE II) which is active only in embryonic erythroid cells and at least two other regulatory domains upstream of the epsilon-globin gene promoter. A nuclear factor highly enriched in cultured embryonic erythroid cells and in mouse embryonic yolk sac binds to a novel, evolutionarily conserved sequence within epsilon-PRE II. We show here that binding of this factor to the conserved element within epsilon-PRE II is critical for transcriptional activity. Point mutations that interfere with protein binding to epsilon-PRE II abolish transcriptional activation of the constitutive epsilon-globin promoter. Adult erythroid nuclei (from cultured cells or adult mouse liver) also contain a factor that binds to this region, but the complex formed migrates more rapidly during nondenaturing electrophoresis, suggesting either that distinct proteins bind to epsilon-PRE II or that a single protein is differentially modified in these cells in a way that modulates its activity. Several lines of evidence suggest that the binding factors in embryonic and adult erythroid cells are distinguished by posttranscriptional differences.
منابع مشابه
Biochemical characterization of the developmental stage- and tissue-specific erythroid transcription factor, NF-E4.
Analysis of the nuclear factors responsible for erythroid gene regulation has led to the cloning of several transcriptional regulatory proteins with clear lines of evidence suggesting or demonstrating their roles in tissue-specific gene expression. However, the erythroid cell lineage-restricted proteins that have been characterized to date do not differ significantly in activity during the dist...
متن کاملRegulation of embryonic/fetal globin genes by nuclear hormone receptors: a novel perspective on hemoglobin switching.
The CCAAT box is one of the conserved motifs found in globin promoters. It binds the CP1 protein. We noticed that the CCAAT-box region of embryonic/fetal, but not adult, globin promoters also contains one or two direct repeats of a short motif analogous to DR-1 binding sites for non-steroid nuclear hormone receptors. We show that a complex previously named NF-E3 binds to these repeats. In trans...
متن کاملTranscriptional activation of human adult alpha-globin genes by hypersensitive site-40 enhancer: function of nuclear factor-binding motifs occupied in erythroid cells.
The developmental stage- and erythroid lineage-specific activation of the human embryonic zeta- and fetal/adult alpha-globin genes is controlled by an upstream regulatory element [hypersensitive site (HS)-40] with locus control region properties, a process mediated by multiple nuclear factor-DNA complexes. In vitro DNase I protection experiments of the two G+C-rich, adult alpha-globin promoters...
متن کاملExpression of the chicken GATA factor family during early erythroid development and differentiation.
The DNA motif WGATAR has been identified within transcriptional regulatory domains of globin and other erythroid-specific genes and the activator proteins that bind to this regulatory element, the GATA factors, belong to a multi-gene family that is expressed in chicken erythroid cells. Here we show that, as in chickens, multiple members of the GATA factor family are expressed in human and murin...
متن کاملKLF2 is essential for primitive erythropoiesis and regulates the human and murine embryonic beta-like globin genes in vivo.
The Krüppel-like factors (KLFs) are a family of C2/H2 zinc finger DNA-binding proteins that are important in controlling developmental programs. Erythroid Krüppel-like factor (EKLF or KLF1) positively regulates the beta-globin gene in definitive erythroid cells. KLF2 (LKLF) is closely related to EKLF and is expressed in erythroid cells. KLF2-/- mice die between embryonic day 12.5 (E12.5) and E1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 14 6 شماره
صفحات -
تاریخ انتشار 1994